Адаптированная рабочая программа учебного предмета «Технология» для 8 класса для детей ЗПР В.7.2

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Адаптированная рабочая программа по технологии для обучающихся с задержкой психического развития (далее – ЗПР) на уровне основного общего образования подготовлена на основе Федерального государственного образовательного общего образования стандарта основного Минпросвещения России от 31.05.2021 г. № 287) (далее – ФГОС ООО), Федеральной адаптированной образовательной программы основного общего образования для обучающихся с ограниченными возможностями здоровья (Приказ Минпросвещения России от 24 ноября 2022 г. № 1025), Федеральной рабочей программы основного общего образования по учебному предмету Федеральной воспитания, «Технология», программы распределенных по классам проверяемых требований к результатам освоения Федеральной адаптированной образовательной программы основного общего образования для обучающихся с задержкой психического развития.

Рабочая программа по технологии составлена на основе содержания общего образования и требований к результатам основного общего образования с учетом особых образовательных потребностей обучающихся с ЗПР, получающих образование на основе ФАОП ООО.

Программа по технологии интегрирует знания обучающихся с ЗПР по разным учебным предметам и является одним из базовых для формирования у них функциональной грамотности, технико-технологического, проектного, креативного и критического мышления на основе практико-ориентированного обучения и системно-деятельностного подхода в реализации содержания.

Программа по технологии знакомит обучающихся с задержкой психического развития различными технологиями, \mathbf{c} В TOM материальными, информационными, коммуникационными, когнитивными, социальными. В рамках освоения программы по технологии происходит приобретение базовых навыков работы с современным технологичным оборудованием, освоение современных технологий, знакомство с миром профессий, самоопределение и ориентация обучающихся в сферах трудовой деятельности.

Образовательная организация призвана создать образовательную среду и условия, позволяющие обучающимся с ЗПР получить качественное образование по технологии, подготовить разносторонне развитую личность,

способную использовать полученные знания для успешной социализации, дальнейшего образования и трудовой деятельности. Адаптация содержания учебного материала для обучающихся с ЗПР происходит за счет сокращения сложных понятий и терминов; основные сведения в программе даются дифференцированно. По некоторым темам учащиеся получают только общее представление на уровне ознакомления.

На основании требований федерального государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностноориентированный, деятельностный подходы для успешной социализации, дальнейшего образования и трудовой деятельности обучающихся с ЗПР.

Освоение обучающимися с ЗПР учебного предмета «Технология» может осуществляться как в образовательных организациях, так и в организациях-партнёрах, в том числе на базе учебно-производственных комбинатов и технопарков. Через сетевое взаимодействие могут быть использованы ресурсы организаций дополнительного образования, центров технологической поддержки образования, «Кванториумов», центров молодёжного инновационного творчества (ЦМИТ), специализированных центров компетенций и др.

Задачами курса технологии являются:

овладение знаниями, умениями и опытом деятельности в предметной области «Технология»;

овладение трудовыми умениями и необходимыми технологическими знаниями по преобразованию материи, энергии и информации в соответствии с поставленными целями, исходя из экономических, социальных, экологических, эстетических критериев, а также критериев личной и общественной безопасности;

формирование у обучающихся культуры проектной и исследовательской деятельности, готовности к предложению и осуществлению новых технологических решений;

формирование у обучающихся навыка использования в трудовой деятельности цифровых инструментов и программных сервисов, когнитивных инструментов и технологий;

развитие умений оценивать свои профессиональные интересы и склонности в плане подготовки к будущей профессиональной деятельности, владение методиками оценки своих профессиональных предпочтений.

Технологическое образование обучающихся носит интегративный характер и строится на неразрывной взаимосвязи с трудовым процессом, создаёт возможность применения научно-теоретических знаний в

преобразовательной продуктивной деятельности, включения обучающихся в реальные трудовые отношения в процессе созидательной деятельности, воспитания культуры личности во всех её проявлениях (культуры труда, эстетической, правовой, экологической, технологической и других ее проявлениях), самостоятельности, инициативности, предприимчивости, развитии компетенций, позволяющих обучающимся осваивать новые виды труда и готовности принимать нестандартные решения.

Основной методический принцип программы по технологии: освоение сущности и структуры технологии неразрывно связано с освоением процесса познания – построения и анализа разнообразных моделей.

Программа по технологии построена по модульному принципу.

Модульная программа по технологии — это система логически завершённых блоков (модулей) учебного материала, позволяющих достигнуть конкретных образовательных результатов, предусматривающая разные образовательные траектории её реализации.

Модульная программа включает инвариантные (обязательные) модули и вариативные.

ИНВАРИАНТНЫЕ МОДУЛИ ПРОГРАММЫ ПО ТЕХНОЛОГИИ

Модуль «Производство и технологии»

Модуль «Производство и технологии» является общим по отношению к другим модулям. Основные технологические понятия раскрываются в модуле в системном виде, что позволяет осваивать их на практике в рамках других инвариантных и вариативных модулей.

Особенностью современной техносферы является распространение технологического подхода на когнитивную область. Объектом технологий становятся фундаментальные составляющие цифрового социума: данные, информация, знание. Трансформация данных в информацию и информации в знание в условиях появления феномена «больших данных» является одной из значимых и востребованных в профессиональной сфере технологий.

Освоение содержания модуля осуществляется на протяжении всего курса технологии на уровне основного общего образования. Содержание модуля построено на основе последовательного знакомства обучающихся с технологическими процессами, техническими системами, материалами, производством и профессиональной деятельностью.

Модуль «Технологии обработки материалов и пищевых продуктов»

В модуле на конкретных примерах представлено освоение технологий обработки материалов по единой схеме: историко-культурное значение

материала, экспериментальное изучение свойств материала, знакомство с инструментами, технологиями обработки, организация рабочего места, правила безопасного использования инструментов и приспособлений, экологические последствия использования материалов применения технологий, а также характеризуются профессии, непосредственно связанные с получением и обработкой данных материалов. Изучение материалов и технологий предполагается в процессе выполнения учебного проекта, продукт-изделие, результатом которого будет изготовленный обучающимися. Модуль может быть представлен как проектный цикл по освоению технологии обработки материалов.

Модуль «Компьютерная графика. Черчение»

В рамках данного модуля обучающиеся знакомятся с основными видами и областями применения графической информации, с различными типами графических изображений и их элементами, учатся применять чертёжные инструменты, читать и выполнять чертежи на бумажном носителе с соблюдением основных правил, знакомятся с инструментами и условными графическими обозначениями графических редакторов, учатся создавать с их помощью тексты и рисунки, знакомятся с видами конструкторской документации и графических моделей, овладевают навыками чтения, выполнения оформления сборочных чертежей, ручными И автоматизированными способами чертежей, подготовки И технических рисунков деталей, осуществления расчётов по чертежам.

Приобретаемые в модуле знания и умения необходимы для создания и освоения новых технологий, а также продуктов техносферы, и направлены на решение задачи укрепления кадрового потенциала российского производства.

Содержание модуля «Компьютерная графика. Черчение» может быть представлено, в том числе, и отдельными темами или блоками в других модулях. Ориентиром в данном случае будут планируемые предметные результаты за год обучения.

Модуль «Робототехника»

В модуле наиболее полно реализуется идея конвергенции материальных и информационных технологий. Значимость данного модуля заключается в том, что при его освоении формируются навыки работы с когнитивной составляющей (действиями, операциями и этапами).

Модуль «Робототехника» позволяет в процессе конструирования, создания действующих моделей роботов интегрировать знания о технике и технических устройствах, электронике, программировании,

фундаментальные знания, полученные в рамках учебных предметов, а также дополнительного образования и самообразования.

Модуль «3D-моделирование, прототипирование, макетирование»

Модуль в значительной мере нацелен на реализацию основного методического принципа модульного курса технологии: освоение технологии идёт неразрывно с освоением методологии познания, основой которого является моделирование. При этом связь технологии с процессом познания двусторонний носит характер: анализ модели позволяет составляющие её элементы и открывает возможность использовать технологический подход при построении моделей, необходимых для познания объекта. Модуль играет важную роль в формировании знаний и умений, необходимых для проектирования и усовершенствования продуктов (предметов), освоения и создания технологий.

В курсе технологии осуществляется реализация межпредметных связей:

- с алгеброй и геометрией при изучении модулей «Компьютерная графика. Черчение», «3D-моделирование, прототипирование, макетирование», «Технологии обработки материалов и пищевых продуктов»;
- с химией при освоении разделов, связанных с технологиями химической промышленности в инвариантных модулях;
- с биологией при изучении современных биотехнологий в инвариантных модулях и при освоении вариативных модулей «Растениеводство» и «Животноводство»;
- с физикой при освоении моделей машин и механизмов, модуля «Робототехника», «3D-моделирование, прототипирование, макетирование», «Технологии обработки материалов и пищевых продуктов»;
- с информатикой и информационно-коммуникационными технологиями при освоении в инвариантных и вариативных модулях информационных процессов сбора, хранения, преобразования и передачи информации, протекающих в технических системах, использовании программных сервисов;
- с историей и искусством при освоении элементов промышленной эстетики, народных ремёсел в инвариантном модуле «Производство и технологии»;
- с обществознанием при освоении темы «Технология и мир. Современная техносфера» в инвариантном модуле «Производство и технологии».
- В образовательной организации имеются хорошо оснащённые мастерские, оборудованные станками по дерево- и металлообработке, а также

мастерские, оснащённые швейными, швейно-вышивальными машинами, выбираем вариант 4 по инвариантным модулям без учёта вариативных.

Общее число часов, рекомендованных для изучения технологии, в 8 классе – 34 часа (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ ИНВАРИАНТНЫЕ МОДУЛИ

Модуль «Производство и технологии»

8 КЛАСС

Общие принципы управления. Самоуправляемые системы. Устойчивость систем управления. Устойчивость технических систем.

Производство и его виды.

Биотехнологии в решении экологических проблем. Биоэнергетика. Перспективные технологии (в том числе нанотехнологии).

Сферы применения современных технологий.

Рынок труда. Функции рынка труда. Трудовые ресурсы.

Мир профессий. Профессия, квалификация и компетенции.

Выбор профессии в зависимости от интересов и способностей человека.

Модуль «Робототехника» 8 КЛАСС

История развития беспилотного авиастроения, применение беспилотных воздушных судов.

Принципы работы и назначение основных блоков, оптимальный вариант использования при конструировании роботов.

Основные принципы теории автоматического управления и регулирования. Обратная связь.

Датчики, принципы и режимы работы, параметры, применение.

Отладка роботизированных конструкций в соответствии с поставленными задачами.

Беспроводное управление роботом.

Программирование роботов в среде конкретного языка программирования, основные инструменты и команды программирования роботов.

Учебный проект по робототехнике (одна из предложенных тем на выбор).

Модуль «3D-моделирование, прототипирование, макетирование» 8 КЛАСС

3D-моделирование как технология создания визуальных моделей.

Графические примитивы в 3D-моделировании. Куб и кубоид. Шар и многогранник. Цилиндр, призма, пирамида.

Операции над примитивами. Поворот тел в пространстве. Масштабирование тел. Вычитание, пересечение и объединение геометрических тел.

Понятие «прототипирование». Создание цифровой объёмной модели.

Инструменты для создания цифровой объёмной модели.

Модуль «Компьютерная графика. Черчение» 8 КЛАСС

Применение программного обеспечения для создания проектной документации: моделей объектов и их чертежей.

Создание документов, виды документов. Основная надпись.

Геометрические примитивы.

Создание, редактирование и трансформация графических объектов.

Сложные 3D-модели и сборочные чертежи.

Изделия и их модели. Анализ формы объекта и синтез модели.

План создания 3D-модели.

Дерево модели. Формообразование детали. Способы редактирования операции формообразования и эскиза.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ТЕХНОЛОГИИ НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения технологии на уровне основного общего образования у обучающегося будут сформированы следующие личностные результаты в части:

1) патриотического воспитания:

проявление интереса к истории и современному состоянию российской науки и технологии;

ценностное отношение к достижениям российских инженеров и учёных.

2) гражданского и духовно-нравственного воспитания:

готовность к активному участию в обсуждении общественно значимых и этических проблем, связанных с современными технологиями, в особенности технологиями четвёртой промышленной революции;

осознание важности морально-этических принципов в деятельности, связанной с реализацией технологий;

освоение социальных норм и правил поведения, роли и формы социальной жизни в группах и сообществах, включая взрослые и социальные сообщества.

3) эстетического воспитания:

восприятие эстетических качеств предметов труда;

умение создавать эстетически значимые изделия из различных материалов;

понимание ценности отечественного и мирового искусства, народных традиций и народного творчества в декоративно-прикладном искусстве;

осознание роли художественной культуры как средства коммуникации и самовыражения в современном обществе.

4) ценности научного познания и практической деятельности:

осознание ценности науки как фундамента технологий;

развитие интереса к исследовательской деятельности, реализации на практике достижений науки.

5) формирования культуры здоровья и эмоционального благополучия:

осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасной работы с инструментами;

умение распознавать информационные угрозы и осуществлять защиту личности от этих угроз.

6) трудового воспитания:

уважение к труду, трудящимся, результатам труда (своего и других людей);

ориентация на трудовую деятельность, получение профессии, личностное самовыражение в продуктивном, нравственно достойном труде в российском обществе;

готовность к активному участию в решении возникающих практических трудовых дел, задач технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такого рода деятельность;

умение ориентироваться в мире современных профессий;

умение осознанно выбирать индивидуальную траекторию развития с учётом личных и общественных интересов, потребностей;

ориентация на достижение выдающихся результатов в профессиональной деятельности.

7) экологического воспитания:

воспитание бережного отношения к окружающей среде, понимание необходимости соблюдения баланса между природой и техносферой;

осознание пределов преобразовательной деятельности человека.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения технологии на уровне основного общего образования у обучающегося будут сформированы универсальные познавательные учебные действия, универсальные регулятивные учебные действия, универсальные коммуникативные учебные действия.

Универсальные познавательные учебные действия

Базовые логические действия:

выявлять и характеризовать существенные признаки природных и рукотворных объектов;

устанавливать существенный признак классификации, основание для обобщения и сравнения;

выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к внешнему миру;

выявлять причинно-следственные связи при изучении природных явлений и процессов, а также процессов, происходящих в техносфере;

самостоятельно выбирать способ решения поставленной задачи, используя для этого необходимые материалы, инструменты и технологии.

Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания;

формировать запросы к информационной системе с целью получения необходимой информации;

оценивать полноту, достоверность и актуальность полученной информации;

опытным путём изучать свойства различных материалов;

овладевать навыками измерения величин с помощью измерительных инструментов, оценивать погрешность измерения, уметь осуществлять арифметические действия с приближёнными величинами;

строить и оценивать модели объектов, явлений и процессов;

уметь создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

уметь оценивать правильность выполнения учебной задачи, собственные возможности её решения;

прогнозировать поведение технической системы, в том числе с учётом синергетических эффектов.

Работа с информацией:

выбирать форму представления информации в зависимости от поставленной задачи;

понимать различие между данными, информацией и знаниями;

владеть начальными навыками работы с «большими данными»;

владеть технологией трансформации данных в информацию, информации в знания.

Регулятивные универсальные учебные действия

Самоорганизация:

уметь самостоятельно определять цели и планировать пути их достижения, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

уметь соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

делать выбор и брать ответственность за решение.

Самоконтроль (рефлексия):

давать адекватную оценку ситуации и предлагать план её изменения;

объяснять причины достижения (недостижения) результатов преобразовательной деятельности;

вносить необходимые коррективы в деятельность по решению задачи или по осуществлению проекта;

оценивать соответствие результата цели и условиям и при необходимости корректировать цель и процесс её достижения.

Умения принятия себя и других:

признавать своё право на ошибку при решении задач или при реализации проекта, такое же право другого на подобные ошибки.

Коммуникативные универсальные учебные действия

У обучающегося будут сформированы умения общения как часть коммуникативных универсальных учебных действий:

в ходе обсуждения учебного материала, планирования и осуществления учебного проекта;

- в рамках публичного представления результатов проектной деятельности;
- в ходе совместного решения задачи с использованием облачных сервисов;
- в ходе общения с представителями других культур, в частности в социальных сетях.

Совместная деятельность:

понимать и использовать преимущества командной работы при реализации учебного проекта;

понимать необходимость выработки знаково-символических средств как необходимого условия успешной проектной деятельности;

уметь адекватно интерпретировать высказывания собеседника – участника совместной деятельности;

владеть навыками отстаивания своей точки зрения, используя при этом законы логики;

уметь распознавать некорректную аргументацию.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Для всех модулей обязательные предметные результаты:

- организовывать рабочее место в соответствии с изучаемой технологией;
- соблюдать правила безопасного использования ручных и электрифицированных инструментов и оборудования;
- грамотно и осознанно выполнять технологические операции в соответствии с изучаемой технологией.

Предметные результаты освоения содержания **модуля** «**Производство и технологии**»

К концу обучения в 8 классе:

характеризовать общие принципы управления;

анализировать возможности и сферу применения современных технологий;

характеризовать технологии получения, преобразования и использования энергии;

называть и характеризовать биотехнологии, их применение;

характеризовать направления развития и особенности перспективных технологий;

предлагать предпринимательские идеи, обосновывать их решение; определять проблему, анализировать потребности в продукте;

овладеть методами учебной, исследовательской и проектной деятельности, решения творческих задач, проектирования, моделирования, конструирования и эстетического оформления изделий;

характеризовать мир профессий, связанных с изучаемыми технологиями, их востребованность на рынке труда.

Предметные результаты освоения содержания модуля «Робототехника»

К концу обучения в 8 классе:

называть основные законы и принципы теории автоматического управления и регулирования, методы использования в робототехнических системах;

реализовывать полный цикл создания робота;

конструировать и моделировать робототехнические системы;

приводить примеры применения роботов из различных областей материального мира;

характеризовать конструкцию беспилотных воздушных судов; описывать сферы их применения;

характеризовать возможности роботов, роботехнических систем и направления их применения.

составлять алгоритмы и программы по управлению робототехническими системами;

самостоятельно осуществлять робототехнические проекты.

Предметные результаты освоения содержания **модуля** «Компьютерная графика. Черчение»

К концу обучения в 8 классе:

использовать программное обеспечение для создания проектной документации;

создавать различные виды документов;

владеть способами создания, редактирования и трансформации графических объектов;

выполнять эскизы, схемы, чертежи с использованием чертёжных инструментов и приспособлений и (или) с использованием программного обеспечения;

Предметные результаты освоения содержания **модуля «3D-моделирование, прототипирование, макетирование»**

К концу обучения в 8 классе:

разрабатывать оригинальные конструкции с использованием 3D-моделей, проводить их испытание, анализ, способы модернизации в зависимости от результатов испытания;

создавать 3D-модели, используя программное обеспечение; устанавливать адекватность модели объекту и целям моделирования; проводить анализ и модернизацию компьютерной модели;

изготавливать прототипы с использованием технологического оборудования (3D-принтер, лазерный гравёр и другие);

модернизировать прототип в соответствии с поставленной задачей; презентовать изделие.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 8 КЛАСС (ИНВАРИАНТНЫЕ МОДУЛИ)

		Количество ч	асов	Электронные	
№ п/п	Наименование разделов и тем программы	Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Раздел 1	1. Производство и технологии				
1.1	Управление производством и технологии	1			https://resh.edu.ru/subject https://урок.рф/
1.2	Производство и его виды	1			https://resh.edu.ru/subject https://урок.рф/
1.3	Рынок труда. Функции рынка труда. Мир профессий	3			https://resh.edu.ru/subject https://ypoκ.pф/
Итого по	о разделу	5			
Раздел 2	2. Компьютерная графика. Черчение				
2.1	Технология построения трехмерных моделей и чертежей в САПР. Создание трехмерной модели в САПР	2			https://resh.edu.ru/subject
2.2	Технология построения чертежа в САПР на основе трехмерной модели	2			https://resh.edu.ru/subject
Итого по	о разделу	4			
Раздел 3	3. 3D-моделирование, прототипирование, м	акетирование			
	Прототипирование. 3D-моделирование				
3.1	как технология создания трехмерных моделей	2			https://resh.edu.ru/subject
3.2	Прототипирование	2			https://resh.edu.ru/subject

3.3	Изготовление прототипов с использованием технологического оборудования	2			https://resh.edu.ru/subject
3.4	Проектирование и изготовление прототипов реальных объектов с помощью 3D-принтера	2			https://resh.edu.ru/subject
3.5	Изготовление прототипов с использованием технологического оборудования	3			https://resh.edu.ru/subject
Итого	по разделу	11			
Разде.	л 4. Робототехника				
4.1	Автоматизация производства	2			https://resh.edu.ru/subject
4.2	Беспилотные воздушные суда	2			https://resh.edu.ru/subject
4.3	Подводные робототехнические системы	2			https://resh.edu.ru/subject
4.4	Основы проектной деятельности. Проект по робототехнике	3			https://resh.edu.ru/subject
4.5	Основы проектной деятельности. Выполнение проекта	3			https://resh.edu.ru/subject
4.6	Основы проектной деятельности. Подготовка проекта к защите. Мир профессий	2			https://resh.edu.ru/subject
Итого	по разделу	14			
				0	
ОБЩІ	ЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34	0		

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ. 8 КЛАСС

8 КЛАСС (ИНВАРИАНТНЫЕ МОДУЛИ)

			Электронные			
№ п/п	Тема урока	Всего	Контрольные работы	Практические работы	Дата изучения	цифровые образовательные ресурсы
1	Управление в экономике и производстве	1				https://resh.edu.ru
2	Инновационные предприятия	1				https://resh.edu.ru
3	Рынок труда. Трудовые ресурсы	1				https://resh.edu.ru
4	Мир профессий. Выбор профессии	1				https://resh.edu.ru
5	Защита проекта «Мир профессий»	1				•
6	Технология построения трехмерных моделей в САПР	1				https://resh.edu.ru
7	Практическая работа «Создание трехмерной модели в САПР»	1				•
8	Построение чертежа в САПР	1				https://resh.edu.ru
9	Практическая работа «Построение чертежа на основе трехмерной модели»	1				•
10	Прототипирование.Сферы применения	1				https://resh.edu.ru
11	Технологии создания визуальных моделей	1				https://resh.edu.ru
12	Виды прототипов. Технология 3D- печати	1				https://resh.edu.ru
13	Индивидуальный творческий (учебный) проект «Прототип изделия из пластмассы	1				https://resh.edu.ru

14	Классификация 3D-принтеров. Выполнение проекта	1	•
15	3D-сканер, устройство, использование для создания прототипов. Выполнение проекта	1	•
16	Настройка 3D-принтера и печать прототипа. Выполнение проекта	1	•
17	Настройка 3D-принтера и печать прототипа. Выполнение проекта	1	•
18	Контроль качества и постобработка распечатанных деталей	1	•
19	Подготовка проекта «Прототип изделия из пластмассы» к защите	1	•
20	Защита проекта по теме «Прототип изделия из пластмассы (других материалов по выбору)»	1	•
21	Автоматизация производства	1	https://resh.edu.ru
22	Практическая работа «Робототехника. Автоматизация в промышленности и быту (по выбору). Идеи для проекта	1	•
23	Беспилотные воздушные суда	1	•
24	Конструкция беспилотного воздушного судна	1	•
25	Подводные робототехнические системы	1	•
26	Подводные робототехнические системы	1	https://resh.edu.ru
27	Основы проектной деятельности. Проект по робототехнике	1	https://resh.edu.ru

28	Основы проектной деятельности. Проект по робототехнике	1			https://resh.edu.ru
29	Основы проектной деятельности. Проект по робототехнике	1			https://resh.edu.ru
30	Основы проектной деятельности. Выполнение проекта	1			https://resh.edu.ru
31	Основы проектной деятельности. Выполнение проекта	1			https://resh.edu.ru
32	Основы проектной деятельности. Выполнение проекта	1			https://resh.edu.ru
33	Основы проектной деятельности. Подготовка проекта к защите	1			https://resh.edu.ru
34	Основы проектной деятельности. Презентация и защита проекта. Мир профессий в робототехнике	1			https://resh.edu.ru
ОБЩЕЕ ПРОГРА	Е КОЛИЧЕСТВО ЧАСОВ ПО АММЕ	34	0	0	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

• Технология, 8-9 классы/ Глозман Е.С., Кожина О.А., Хотунцев Ю.Л. и другие, Общество с ограниченной ответственностью «ДРОФА»; Акционерное общество «Издательство «Просвещение»

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

https://resh.edu.ru/subject/8/ https://resh.edu.ru/subject/8/7/

https://ypoк.pф